Identifican las proteínas que provocan que las neuronas mantengan su identidad a lo largo de la vida

Europa Press | 25 may, 2020 14:04
ep representacion artistica de las neuronas del giro dentado como una perdida progresiva de
Representación artística de las neuronas del giro dentado como una pérdida progresiva de resolución de izquierda a derecha, que ocurriría en paralelo a una reducción en los niveles de las proteínas CBP y p300.INSTITUTO DE NEUROCIENCIAS (CSIC-UMH)

MADRID, 25 (EUROPA PRESS)

El mantenimiento de la identidad de las neuronas a lo largo de la vida, o lo que es lo mismo, de su aspecto y funciones características, depende de dos factores epigenéticos denominados CBP y P300, según ha descubierto un equipo liderado por el investigador Ángel Barco, del Instituto de Neurociencias, centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad Miguel Hernández.

Las proteínas CBP y P300 son los dos únicos miembros de la familia de las acetiltransferasas de lisina tipo 3 (KAT3). Actúan a nivel epigenético, es decir, introduciendo modificaciones químicas en el ADN sin alterar su secuencia, lo que permite aumentar la expresión de determinados genes.

En este trabajo, publicado en la revista 'Nature Communications', estos científicos españoles han evidenciado cómo al eliminar simultáneamente a CBP y p300 en el cerebro de ratones, las neuronas pierden en pocos días sus conexiones sinápticas y su capacidad de responder a estímulos eléctricos, características necesarias para la funcionalidad del cerebro.

En ausencia de estas dos proteínas, las neuronas pasan a un estado indiferenciado, a "una especie de limbo celular", pero no mueren. "Nos sorprendió que las células siguieran vivas. Esto se debe a que el programa de supervivencia celular, que llevan a cabo otros genes llamados de mantenimiento, no depende de las proteínas CBP y p300", explica el científico del CSIC.

El equipo de investigadores ha demostrado que la eliminación conjunta de ambas proteínas en las neuronas excitadoras del cerebro anterior de ratones adultos conduce en pocos días a una severa disminución de la capacidad para coordinar movimientos (ataxia), retracción de las dendritas y reducción de la actividad eléctrica de las neuronas. Paralelamente, a nivel molecular tiene lugar una disminución de la regulación de los genes de las neuronas.

Cada tipo de célula del organismo tiene un patrón de expresión génica característico, regulado a nivel epigenético, que determina su identidad y permite la existencia de la diversidad de tejidos y órganos. "Gracias a que expresan distintos genes, una neurona tiene unas características y realiza unas funciones distintas de un hepatocito en el hígado o un leucocito en la sangre", aclara Barco.

Uno de los grandes interrogantes era cómo mantienen las células su identidad de una generación a la siguiente. Y en el caso de las neuronas, a lo largo de toda la vida, ya que estas células del cerebro no se dividen para dar lugar a otras nuevas, salvo un número muy reducido de ellas, localizado en lugares muy concretos del cerebro.

Lo que sí se sabía con anterioridad es que las proteínas CBP y P300 participan activamente en el proceso de diferenciación celular, por el que cada tipo de célula adquiere su morfología y funciones específicas, es decir su identidad. Y lo que ha demostrado ahora este trabajo es que precisamente estas dos proteínas son también las responsables de que esa identidad celular se mantenga a lo largo de toda la vida de las neuronas.

"La mayor parte de lo que sabemos sobre la reprogramación y el mantenimiento del destino celular proviene de estudios de la división celular, pero todavía no sabíamos qué hace que una neurona siga siendo una neurona durante toda la vida del individuo. Este estudio identifica de manera concluyente a las acetiltransferasas de lisina CBP y p300 como salvaguardias clave del destino celular y proporciona una visión esencial sobre cómo se preserva la identidad neuronal a lo largo de toda la vida", detalla el investigador del Instituto de Neurociencias.

Se sabe desde hace tiempo que estas dos proteínas están vinculadas a algunos cánceres. Además, cuando los genes que codifican para una de ellas (CBP, y en menor medida p300) están mutados da lugar a un síndrome denominado de Rubinstein-Taybi, asociado a discapacidad intelectual y a comportamientos del espectro autista.

Estas proteínas también podrían jugar un papel importante en el envejecimiento, como detalla el científico del CSIC: "Aunque una pérdida de identidad tan dramática como la que observamos en nuestro modelo, en el que eliminamos estas dos proteínas al mismo tiempo, no se da de forma natural, el envejecimiento y las patologías asociadas al mismo creemos que tienen que ver con un deterioro del epigenoma y una pérdida parcial de identidad de algunos tipos celulares, incluidas las neuronas".

contador